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The finite-amplitude evolution of circular two-layer quasi-geostrophic vortices with 
piecewise uniform potential vorticity in each layer (also termed ‘heton’ clouds by 
Hogg & Stommel 1985a and Pedlosky 1985) is studied using the contour dynamics 
method. The numerical investigations are preceded by a linear stability analysis 
which shows the stabilizing influence of deepening the lower layer. Net barotropic 
flow may be either stabilizing or destabilizing. The contour dynamics calculations for 
baroclinic vortices show that supercritical (i.e. linearly unstable) conditions may lead 
to explosive break up of the vortex via the generation of continuous hetons a t  the 
cloud boundary. The number of vortex pairs is equal to the azimuthal mode number 
of the initial disturbance. An additional weakly supercritical regime in which 
amplitude vacillation occurs, but not explosive growth, is identified. Vortices with 
net barotropic circulation behave similarly except that the layer with vorticity 
opposite to the barotropic circulation will break up first. Strong barotropic 
circulation can inhibit the development of hetons. The stronger layer may eject thin 
filaments, but remain mostly intact. Calculations for initial conditions composed of 
several unstable modes show that the linearly most unstable mode dominates a t  
finite amplitude. 

1. Introduction 
Hogg & Stommel (1985 b )  investigated the interactions of point vortices in a two- 

layer quasi-geostrophic f-plane system. A novel feature of these baroclinic vortex 
interactions was the existence of vortex pairs which could transport heat - ‘ hetons ’. 
A heton consists of two point vortices, of opposite signs in opposite layers, which are 
laterally offset. Mutual advection leads to propagation in a direction perpendicular 
to the line connecting the centres if the strengths and layer depths are equal. Non- 
equal layer depths or strengths causes curved paths. The baroclinic structure 
permitted net heat transport. Hogg & Stommel (1985b) and Young (1985) further 
investigated the interactions of two hetons and found a range of behaviours from 
coalescence to repulsion, depending on the signs, strengths and initial separation of 
the individual hetons. 

I n  an effort to explain the break up of warm pools of water Hogg & Stommel 
(19854 extended the vortex interaction studies to consider large assemblages (or 
clouds) of point vortices in a two-layer system with equal depths, H I .  They found 
that a circular baroclinic heton cloud of radius L (unit strength positive vortices in 
the upper layer and unit strength negative vortices in the lower layer for radius 
r < L)  would break up into m composite hetons. These smaller heton clouds would then 
propagate radially outward. The number of composite hetons was found empirically 
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to be given by m = I.lOFl for m 2 2, where Fl = f 2 L 2 / g ' H l ,  L is the initial cloud 
radius, g' is the reduced gravity and f is the Coriolis frequency. The internal 
rotational Froude number Fl is a measure of the eddy radius compared with the 
internal Rossby deformation radius h = (ig'H,); f - ' .  

Yedlosky (1985) examined the linear stability of the continuous version of the 
circular heton cloud. For equal layer depths and equal and opposite potential 
vorticities in the upper and lower layers of a cloud of radius L the cloud was found 
to be unstable to longwave disturbances. For large cloud radii m - 2;E;. The 
instability occurred when perturbations of the upper and lower cloud boundaries 
were appropriately out of phase. Mutual interaction between the layers resulted in 
growth of the disturbance. The boundary perturbations can be thought of as acting 
like single point vortices. The phase difference between layers is analogous to the 
lateral offset necessary for heton self-propulsion and the arrangement is such that 
vortex pairs will propagate radially outward. Pedlosky (1985) further considered the 
linear and weakly nonlinear behaviour of a straight cloud band. The linear analysis 
exhibited the same type of instability as the circular geometry. The nonlinear 
analysis required the supercriticality d = (F, -Fl,)/Fl, 4 I ,  where F,, is the value of 
Fl a t  the linear stability boundary. Pedlosky showed that interaction of the 
fundamental wave with its next higher harmonic resulted in explosive growth for all 
unstable wavenumbers. These results were consistent with the point vortex model of 
Hogg & Stommel (1985a). 

In this paper we generalize the linear stability analysis and present numerical 
studies of the continuous two-layer f-plane baroclinic vortex instability a t  finite 
amplitude. This is accomplished via the contour dynamics method (Zabusky, 
Hughes & Roberts 1979) which we have formulated for multilayer quasi-geostrophic 
systems. The method allows the fully nonlinear evolution to be followed with the 
requirement that the system consists of regions of uniform potential vorticity. 

In a related study Ikeda (1981) examined the linear and nonlinear evolution of a 
circular baroclinic eddy in a two-layer quasi-geostrophic f-plane system. The eddies 
had a nearly Gaussian profile of potential vorticity in each layer rather than a 
piecewise uniform distribution. For the particular geometry and vorticity dis- 
tributions studied he found that the vortex was most unstable to  a mode 2 azimuthal 
disturbance. Finite-amplitude evolution for unstable mode 2 disturbances showed 
initial eddy elongation followed by either return to a circular eddy for small linear 
growth rates or splitting of the eddy into two smaller eddies for larger growth 
rates. 

Ikeda's results are similar to Hogg & Stommel (19854 and Pedlosky (1985) in that 
instability may lead to break up of the eddy, but differ in the fact that some cases 
lead to a return to a circular eddy. Although our proposed model requires piecewise 
uniform potential vorticity, i t  does allow for full nonlinear development of the 
instability. As such, i t  contains the full nonlinearity of Ikeda's calculations and the 
simple vorticity distribution of the heton cloud studies while retaining more 
resolution than the point vortex model. Thus it should help to unify the earlier 
results. Indeed, we find both vacillation and explosive regimes analogous to lkeda's 
calculations. 

The paper is organized as follows. In  92 the linear theory is extended to examine 
the effects of unequal layer depths and net barotropic flow on stability. In  $ 3  the 
contour dynamics formulation for two active layers on an f-plane is presented. 
Numerical results appear in $4, followcd by a discussion of the results in 95. 
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FIGVRE 1. Definition sketch for the two-layer circular vortex. 

During the final preparation of this paper we became aware of some recent work 
by Kozlov, Makarov & Sokolovskiy (1986) which anticipates some of the results of 
this work. They formulate a similar contour dynamics problem but only examine the 
finite-amplitude evolution for one example. Our work covers aspects which are not 
addressed there, such as evolution with net barotropic circulation and evolution with 
several unstable modes in the initial condition. Furthermore, we find vacillating 
behaviour . 

2. Linear stability analysis 
In  this section the linear stability of a circular two-layer quasi-geostrophic vortex 

on the f-plane is examined, The derivation follows the analysis of Pedlosky(l985) 
with the addition of unequal layer depths and net barotropic circulation. This linear 
stability analysis serves as background to the fini te-amplitude calculations discussed 
in $4. 

Consider the two-layer system in which the quasi-geostrophic potential vorticity 
in layer n, 

Qn = V 2 $ n  + ( - 1)" Fn($l - $ z ) j  (2.1) 

is a constant, q,, for r < 1 and zero for r > 1 (see figure 1). The conservation of 
potential vorticity in each layer requires 

Here $, is the stream function in layer n = 1,2  (upper and lower layers respectively) 
and F, = L2f2/g'H, is the rotational Froude number in layer n. H ,  is the undisturbed 
depth in layer n, f is the Coriolis frequency and g' = g(p,--p,)/p, is the reduced 
gravity. Here (2.1) and (2.2) have been normalized by the eddy radius L,  a velocity 
scale U ,  the timescale L / U  and the potential vorticity scale U I L .  

The basic steady state stream function, Yn(r) ,  is obtained by solving (2.1) for t,he 
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potential vorticity distribution in figure 1 with the conditions that Yn is regular a t  
r = 0, co and Yn and aYn/ar are continuous a t  r = 1 .  This gives 

where qn = 41 + 6-lq2, q T  = Y l - q Z ,  = (F1 +F2)t, (2.4 a-c ) 

and 6 = H l / H ,  = Fz/Fl. (2.4d) 

Here qB and qT are the barotropic and baroclinic potential vorticities, respectively, 
and K ,  and I ,  are modified Bessel functions of order m. From ( 2 . 3 )  the basic-state 
azimuthal velocities, Vn(r)  = aYn/ar ,  are 

Within each uniform potential vorticity region linear perturbations, $n(r,  8, t ) ,  to 
the basic state must satisfy 

vz$fp,+E:,(-1)" ($1-$2) = 0, 

along with the boundary conditions (Yedlosky 1985) 

$n 
$n 

regular a t  r = 0, co, 
continuous a t  r = 1 ,  

and a v a a$ i a$,dvn 0 at r a8 ar r a8 dr 
--+A- -. . . .E-- continuous a t r  = 1.  

(2 .7a )  
(2.7h) 

( 2 . 7 ~ )  

The last of these is a statement of pressure continuity a t  the boundary. Searching for 
normal mode solutions of the form 

$, = Gn(y) ei(m+wt),  (2 .8 )  

where m is the azimuthal wavenumber and w is the complex frequency, the boundary 
conditions (2.7a, b )  give 

Arm +B( -6)n-11,(kr)/Im(k) 

Ar-,  +B( -8)n-1K,(kr)/Km(k) 

( r  < I), 

( r  > 1) .  
@ n ( r )  = 

From the dynamic boundary condition (2.7c), two equations for A and 3 are 

(2.10a) 

found, 
m-w 

A[28m( Vl( 1 )  m-w) - mSq,] + B 

and 

V,( 1) refers to the velocity in layer n a t  r = 1 from (2 .5 ) .  For non-trivial solutions the 



Finite-amplitude evolution of two-layer geostrophic vortices 335 

I 

1- - - 
Unstable 

r---4 
I 
1- 2 - - 

I 

0 1 2 3 4 5 
m 

FIGURE 2. Stability diagram for the purely baroclinic case, qB = 0 and several layer depth ratios: 
~ & = I . - - -  S = 0 . 5 . - . - . -  , 6 = 0.25. 
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FIGURE 3. Growth rates, o,, for the purely baroclinic vortex, qn = 0, as a function of F,: -. 
S =  l . O a n d m = 2 4 ; - - - , 6 = 0 . 3 3 a n d m = l ? ; - . - . - ,  S=0.1 a n d m = 2 .  

determinant of the coefficients in (2.10) must be zero, which leads to  the dispersion 
relationship for c = w/m, 

~ ~ { - 2 m ( l + 6 ) ) + ~ { ( 1  +6)2m(V1( l )+  V 2 ( 1 ) ) - 2 m K , ( k ) I , ( k )  (ql+Sq,) 

- f&zl +%?)I + - 2ml1+ 8) VI(1) VZCl f + 2mK,(k) I,(@ (6qz V*(1) + Q1 V'C 1 )) 

+(a% V 2 ( 1 ) + q z  v l ( l ) ) - 4 1 q 2 K n ( k ) l , ( k )  (1+S)) = 0. (2.11) 

When 6 = 1 and qB = 0 (2.11) reduces to (3.10) in Ptdosky (1985). 
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FIGURE 4. Stability diagram for net barotropic circulation with m = 2 and q1 = 1 : 
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FIGURE 5 .  Growth rates for several values of the barotropic vorticity, qs.  for m = 2 and - - -, 
8 = 0.33; -. 8 = 1.0. 

The region of instability for purely baroclinic vortices (qB = 0) is illustrated in 
figure 2 ,  For a11 S, mode 2 is the first to become unstable as increases (broader 
vortices). Decreasing S (increasing H,) increases the critical value of Pl = F,, for all 
m. In  the limit S - t  0 we have the reduced gravity (li-layer) model and the result that 
a circular vortex is linearly stable. I n  figure 3 the growth rates are shown. When S 
is decreased the maximum growth rates are reduced. The net effect of an increasing 
lower layer depth is to stabilize the vortex. 

Net barotropic circulation may be stabilizing or destabilizing. Stability regions for 
m = 2, q1 = 1 and S = 0.33 and 1 are shown in figure 4. The corresponding growth 
rates for several values of qB are plotted in figure 5 .  The choice of q1 = 1 can be made 
without loss of generality and is equivalent to setting thc velocity scalc U = 

I; x (dimensional value of ql).  Net barotropic flow introduces a maximum critical 
value of Fl. As qB is increased above zero the vortex is stabilized and the growth rates 
are reduced. For qB 2 1 the vortex is stable to all modes since the vorticity is the 
same sign in both layers and heton formation is prohibited (or alternatively, since the 
radial vorticity gradient is the same sign everywhere in both layers the vortex 
must be stable, Pedlosky 1979). Thus, vorticity of opposite sign in the two layers is 
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a necessary condition for instability. For qB < 0 the vortex is destabilized in the sense 
that the lower critical value ofFl is reduced (6 < 1 )  and the growth rates are increased. 
For very large negative qB the region of instability becomes very small. In  this limit 
the vortex is nearly completely barotropic and thus stable. Higher modes behave 
similarly and become unstable a t  successively larger Fl. Again, decreasing 6 is 
stabilizing. 

3. Contour dynamics formulation 
Finite-amplitude evolution of unstable vortices can be studied using the contour 

dynamics method (Zabusky et al. 1979). Since the method has become quite 
standard, only an outline of the procedure and important steps for the two-layer 
formulation will be given. The formulation for the reduced-gravity (1;-layer) quasi- 
geostrophic system is discussed by Pratt  & Stern (1986). 

The contour dynamics method is based upon the presence of piecewise uniform 
potential vorticity in regions of space bounded by contours. Knowledge of the 
contours thus determines the potential vorticity distribution, which in turn allows 
solution for the flow field by inverting (2.1). For the system introduced in $ 2  
conservation of potential vorticity in each layer gives 

(inside C,) 

(outside C,) 

where C, is the contour which encloses the region (no longer necessarily circular) of 
uniform potential vorticity in each layer. Since the vorticity is uniform within the 
contours it is sufficient to follow the evolution of the contours. From ( 3 . 1 )  two 
equations for the barotropic, 

$B = $1+6-v,> (3 .2a)  

and baroclinic, $T = $1 - $ 2 ,  (3.2b) 

modal components are, 

inside C,) 

0 (outside C,) 0 (outside C,) 
+ 6-1 } (3 .3)  v2$B = 4B(x, 9) = 

{ql (inside Cl)}-{y2 (inside C,) 

0 (outside C,) 0 (outside C,) 
and v2$T-  I C 2 $ ,  = qT(X, y) = 

where k is given by ( 2 . 4 ~ ) .  
The Green functions for the barotropic component, (2n)-' log r ,  and the baroclinic 

component, - (2n)- lK0(kr) ,  are used to construct the solutions to (3 .3)  and (3 .4)  a t  
some point (x, y), 

and 

where 
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The barotropic velocities (uB, vB) and baroclinic velocities (uT, vT) are found by 
taking (-a/ay, alax) of (3.5a, 6).  Since the vorticity is uniform within each contour 
and zero outside, the divergence theorem is used to convert the resulting area 
integrals into contour integrals 

and 

( 3 . 6 ~ )  

(3.6b) 

From (3.2) and (3.6) the velocities in each layer (un, wn) can be reconstructed as 

where 

and 
- “‘“.I , 

[p ;L2] = [”; 
2,l 2 , 2  q 2  

(3.7) 

In (3.6) and (3.7) the sense of the contour integrals is counterclockwise. If the 
contours are defined by node points (x i ,  y i ) ,  then the temporal evolution of C, can be 
found from the Lagrangian advection of each node point according to 

where the velocities (un, w n )  are given by (3.7). 
Note that the method may be generalized to n layers (n  > 2) by extending the 

modal decomposition (3.2),  then repeating the subsequent development. This leads 
to an equation for the velocities similar to (3.7), but including contributions from all 
the contours and modal components. 

Following Pratt & Stern (1986) the velocities are found by using the trapezoidal 
rule to compute the contour integrals in (3.7). The temporal integration of (3.8) is 
accomplished using either a second-order Runge-Kutta method or the second-order 
Adams-Bashforth explicit multi-step method (Dahlquist & Bjorck 1974). The 
Adams-Bashforth method requires only one computation of the right-hand side of 
(3.8) per timestep, as opposed to two computations for the Runge-Kutta method and 
thus was used for most of the results presented below. Comparisons of the methods 
gave indistinguishable results a t  sufficiently small timesteps. Further savings in 
computational effort may be realized using symmetries of the problem when qB = 0, 
6 =  1. If the initial condition is a single normal-mode (see $4), one contour is an 
inverted image of the other so that only one contour needs to solved for explicitly. 
Angular symmetry is also present and only N / m  points need to be tracked. 

Most of the runs discussed below used 50 node points for each contour and a time- 
step of At = 0.15. Conservation of vorticity requires that the area within each 
contour remain constant. In  all runs the areas remained within 1-2 % of the initial 
area unless the node points became excessively bunched and a contour crossed over 
itself. At this time the numerical solution became unstable and the subsequent data 
was disregarded. Node adjustment or regularization procedures (Zabusky & 
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Overman 1983) were not employed. Test runs with high resolution of 100-200 points 
per layer showed some quantitative differences in details a t  large times, but the 
qualitative features a t  these times remained. 

4. Numerical results 

contour shape of the initial condition is given by r ,  = 1 +qn where 
In this section the finite-amplitude evolution of circular vortices is examined. The 

} = Re {ID,l ei(mo-(Ot+fln) 1. (4.1) T n  = Re {D, ei(mfl-d) 

Here 7, is the perturbation in layer n, D, is the complex amplitude and p, is the 
phase shift. The perturbations used are the growing normal-mode solutions (2.8) of 
the linear stability problem. The contour shape 7, is related to the flow field 
Y,+#, by the linearized kinematic boundary condition at  r = 1,  

This determines D, as 

(4.3) 

where A is an arbitrary real constant, B /A is found from (2.10), V,(r) is found from 
(2 .5 )  and c is given by (2.11). Initial disturbance amplitudes, IDJ,  considered were in 
the range [0.01,0.1]. Some runs were made with arbitrary amplitudes and phases and 
so do not correspond to normal modes. As in 92 we set q1 = 1 without loss of 
generality. The focus will be on vortices with equal layer depths (6 = 1) .  The 
behaviour with 6 + 1 is quantitatively, but not qualitatively different. 

4.1. Xupercritical evolution explosive behaviour 
Consider first the evolution of vortices with zero net barotropic circulation, qB = 0, 
equal layer depths, 6 = 1, and supercriticality A = (B'l-B'lc)/Flc = O(1) .  An example 
of the typical unstable finite-amplitude evolution for an m = 2 normal-mode 
disturbance is shown in figure 6 ( a ) .  The initial perturbations of the cyclonic upper 
layer pair with the nearest perturbations in the anticyclonic lower layer. Each pair 
propagates outward by self-advection leading to splitting of the original vortex. Thin 
filaments connect the separated eddies in each layer. Because the model is 
conservative these filaments will continue to elongate as the vortex pairs move apart. 
Presumably, in a non-conservative system viscosity would eventually cause the 
filaments to break. We have not made any attempt to cut the filaments since their 
presence does not appear to influence the main features of the evolution, namely the 
pairing and subsequent break up of the initial vortex. Figure 6 ( a )  qualitatively 
corresponds to  figure 5 ( A  = 1 .O) in Hogg & Stommel(lY85 a )  where an unstable cloud 
of point vortices evolves to form two composite hetons. 

The splitting in figure 6 ( a )  occurs rapidly. After 1-2 circulation periods two 
distinct pairs have formed. Shown in figure 6 ( b )  is the evolution of the amplitudes of 
wavenumbers 2 and 4 found from Fourier analysis of the data in figure 6 ( a ) .  Initially 
wavenumber 2 grows at  the linear rate. Later, nonlinear interaction generates mode 
4 and the vortex subsequently splits. 

The finite-amplitude evolution of unstable vortices is not sensitive to the initial 
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FIGURE 6 (a )  Evolution of an unstable vortex with an m = 2 normal-mode perturbation. (F, ,S,  
q l , q , ,  ID,l) = (2.5,1, 1 ,  - 1,0.025). Tn this and subsequent contour figures: -, the upper layer 
contour; - - -, the lower layer contour; 0, node point 1 in the upper layer; A, node point 1 in the 
lower layer. ( b )  Growth of the Fourier amplitude (normalized by the initial perturbation 
amplitude ah”) vs. time for -. the run in (a) and - - -, the linear theory. 

t = 84 
+. 

FIGURE 7 .  Evolution of an unstable vcrtex with an m = 3 normal-mode perturbation. 
(~l,S,ql,q2,1~nl) = (5 .0 ,1,1,  -1,0.025). 

amplitude of the disturbance, though the splitting occurs sooner as the amplitude of 
the disturbance is increased. The initial growth rate docs not depart significantly 
from the linear theory for ID,I d 0.1. 

Figure 7 shows a run in the regime when m = 3 is unstable. Mode 2 is also linearly 
unstable but the initial condition contained only mode 3. Examples with several 
unstable modes in the initial condition will be discussed in 54.4. The evolution is 
similar to figure 6, with three offset pairs forming. Additionally, a baroclinic vortex 
is left in the centre. Again the initial growth is a t  the linear rate. 

Pairing of perturbations of opposite signs is characteristic of all unstable vortices, 
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with the number of pairs equal to the perturbed mode. For m >, 3 a vortex is left at 
the centre. If the initial disturbance does not have the correct phase /3, for a growing 
normal mode, but is an unstable wavenumber, the vortex is still unstable. This 
follows because the initial condition can be decomposed into a superposition of a 
growing and a decaying normal mode. Thus the finite-amplitude state is qualitatively 
the same as the corresponding growing normal-mode case. 

4.2. Supercritical evolution : vacillation 
The unstable runs examined above were all highly supercritical with d = O(1). 
Pedlosky (1985) analysed the weakly nonlinear ( A  4 1) evolution of a straight cloud 
band and showed that all linearly unstable wavenumbers were explosively unstable 
(i.e. no vacillation). Finite, but small, perturbations of initial states just into the 
stable regime could also be explosively unstable if the initial disturbance was large 
enough. However, our numerical study does not behave according to this weakly 
nonlinear thepry. Numerical experiments with one unstable wavenumber show a 
regime in which supercritical conditions lead to amplitude vacillation. This finding 
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t = O  t = 3 0  t = 60 

t =  150 

FIGURE 9. Large-amplitude vacillation of a weakly supercritical m = 2 perturbation. 
(Fl,S,pl,p,,ID,I,p,) = (1.5,1,1, -1,0.05,0). 

is confirmed by Flier1 (1988) and discussed further in $5. Figure 8 ( a )  shows an 
example with m = 5. The amplitude of mode 5 settles into a long period oscillation 
as shown in figure S(6) .  The maximum amplitude of the vacillating mode slowly 
decays with time. This decay is consistent with reduction in the area invariant 
(potential vorticity) and appears to be due to numerical error over long integration 
times. For a given wavenumber the oscillation period and the maximum amplitude 
increase as the supercriticality is increased. Large-amplitude oscillations are 
illustrated in figure 9 where an m = 2 perturbation grows very large, outside the 
range of applicability of weakly nonlinear analysis. Slightly subcritical vortices 
remain stable even for large initial disturbances (ID,l < 0.1). The evolution is similar 
to the weakly supercritical cases discussed above. 

Vacillating behaviour is found for all wavcnumbers. In  figure 10 we show the 
location of the boundary between the vacillating and explosive regime for qs = 0 and 
S = 1. The location of the boundary is not sensitive to the initial phase relation (i.e. 
normal-mode structure) or to amplitude for ID,I < 0.1, although the maximum 
amplitudes do depend on the initial phases. The range of vacillating behaviour 
decreases with decreasing m, but is still present for m = 2. The boundary is sensitive 
to the number of node points used to define the contour. For more than 
approximately 5Om points per layer the boundary is stable, but the vacillation range 
increases as the number of points decreases below this value. The data used to 
construct figure 10 used sufficient numbers of points to achieve a stable boundary. 

The qualitative behaviour of vortices with unequal layer depths 8 +  1 and 
qB = 0 is the same for 6 = 1. Explosive growth and vacillation regimes occur though 
we have not documented the ranges. 

4.3. Net barotropic circulation 
An example of an unstable case with a net barotropic flow (qB + 0) is illustrated in 
figure 11 for an m = 2 disturbance. The symmetry between layers found when 
qB = 0 is lost. The tendency for tblongation and pairing remains; however, the layer 
with vorticity of sign opposite to qs splits first. The development of distinct heton pairs 
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FIG~JRE 10. Stability diagram for ( q B ,  8) = ( 0 , i )  showing - - -, the transition from vacillation to  
explosive growth. The symbols correspond to  numerical experiments which showed 0, vacillation 
or 0, explosive instability. -, linear stability boundary. 

is retarded as the barotropic flow is increased. Figure 12 illustrates this behaviour for 
an m = 3 instability. In  figure 12(a), qB = 0.1 and asymmetrical pairs emerge. For 
yB = 0.5 (figure 12b) the weaker layer is split into 3 vortices and a remaining central 
core. The stronger upper layer is distorted but remains intact except for the ejection 
of filaments. The filaments are stretched by interaction with both the vortices in the 
opposite layer and the vortex core in the same layer. When qB = 0.75 (figure 12c) no 
filaments are present a t  a comparable time. The tendency for the layer with vorticity 
the same sign as yB to remain intact increases as the strength of the barotropic 
circulation increases. The vorticity in the other layer may act to cause detrainment, 
but is not strong enough to result in heton development. 
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(a) I t = 52.5 
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FIGUILE 12. Large-time states for experinierits with net barotropicl circulation and m = 3 
perturbations. (F,, 8, rn, ID,l.,8,t) = (7.0,1.0,3,0.05,0). ( a )  qB = 0.1; (h )  qu = 0.5; (c)  yB = 0.75. 
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FIGURE 13. (a) Evolution of unstable vortex with a superposition of m = 2, 3 and 4 normal-modes 
initial condition for F ,  = 7.0. (8, qR,  = (1.0,0,0.02). ( b )  Fourier amplitudes for -, m = 2 ,  3 
and 4 and - ~ -, the linear theory. 

4.4. Multiple wavenumber disturbances 
When more than one wavenumber is unstable the interaction of the growing modes 
is of interest. To examine this issue experiments with initial conditions consisting of 
the superposition of growing normal-modes 2, 3 and 4 with equal amplitudes were 
conducted for the purely baroclinic vortex qB = 0 with S = 1. The results show that 
the wavenumber with the largest linear growth rate will dominate at finitc 
amplitude. An example for Fl = 7.0 is shown in figure 13. Mode 3 has the largest 
growth rate (wiz) = 0.0760, w:3) = 0.0926 and w y )  = 0) and three distorted heton pairs 
are formed. From the evolution of the Fourier amplitudes (figure 13b)  the unstable 
modes initially grow a t  their linear rates with little evidence of strong interaction 
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FIGURE 14. Same as figure 13 except with Fl = 14.0. 

before the vortex splits. Figure 14 shows another example a t  F, = 14.0 where mode 
4 has the largest linear growth rate (w!') = 0.0542, m i 3 )  = 0.0854 and wl4) = 0.0955). 
The final state is again consistent with the linear theory. These conclusions do not 
require normal-mode phase structure in the initial conditions. Owing to the explosive 
nature of the instability, differences in the initial amplitudes of the modes may be 
important. The mode with the largest linear growth rate may not dominate if its 
initial amplitude is much smaller than the amplitude of any other growing mode. The 
slower growing mode may reach a large amplitude and destroy the original vortex 
before the fastest growing mode becomes significant. 

5.  Discussion 
This study of the stability and finite-amplitude behaviour of circular baroclinic 

vortices has demonstrated that the continuous model contains similar behaviour to 
the point vortex model (Hogg & Stommel 1985a). The main feature of an explosively 
unstable vortex is the pairing of vorticity perturbations of opposite signs in opposite 
layers a t  the cloud boundary. These pairs interact to form continuous hetons and the 
vortex is split as the pairs propagate outward. Even though both 6 and qB are 
parameters of the problem, qB is the most important one governing the finite- 
amplitude evolution of unstable vortices. For vortices with sufficient net barotropic 
circulation the generation of hetons a t  the cloud boundaries may not occur. The layer 
with vorticity 3f the same sign as the net barotropic flow will emit filaments, but 
remain mostly intact. Thus spreading of fluid (and heat) is inhibited since the lateral 
transport mechanism, hetons, is no longer present. 
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FIGURE 15. Transitions between modes of instability as a function of F, from 0, the experiments 
of Griffiths & Linden (1981), and 0 ,  from the linear theory (8 = 1 .  qB = 0) based on thr mode with 
the largest growth rate. Also shown is 0, the linear stability boundary. 

One feature which does not appear in the weakly nonlinear theoretical analysis of 
Pedlosky ( 1985) is the occurrence of vacillation for weakly supercritical conditions. 
Flierl (1988) uses an analytic theory which employs the contour dynamical procedure 
(i.e. exploits the linearity of the relationship between the potential vorticity and the 
streamfunctions) and also finds vacillation for both the straight cloud band (the only 
case considered by Pedlosky) and the circular heton cloud. Thus the geometry does 
not appear to be the controlling factor. The difference between the new studies and 
Pedlosky lies in the determination of the streamfunctions in the small region between 
rl and q2.  Pedlosky’s approach leads to an error which is avoided here. The reader 
is referred to Flierl for a more complete discussion. Though the differences are small, 
the final result is sensitive because it is the details of the interactions of the frontal 
perturbations which determine the evolution. Unlike Flierl, our numerical cal- 
culations show that the vacillation regime is limited to small supercriticalities, a 
result not obtained with the weakly nonlinear theory. 

Hogg & Stommel (1985a) found that when six hetons were spaced equally around 
a circle they would not explode if the ratio of the circle radius to the deformation 
radius was not too large. Individual vortices would move around the vortex along 
undulating paths. This behavionr is similar to the vacillation found here. A circle of 
hetons has the velocity shear concentrated a t  the circle rim as would a broad 
continuous heton cloud. The vacillation also appears to be analogous to the 
reformation of weakly supercritical vortices with a continually varying, rather than 
piecewise uniform, distribution of potential vorticity studied by Ikeda (1981). 
However, his calculations were not carried very far in time, so we cannot be sure that 
the return to a circular eddy is the decay stage of a vacillation cycle or the end 
state. 

When more than one unstable wavenumber is present in the initial condition the 
wavenumber with the largest linear growth rate will dominate a t  large times. The 
individual modes grow at  approximately their linear rates with little interaction 
prior to break up of the vortex. In  contrast, studies of baroclinic instability in two- 
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layer zonal flows (Eady-type models) demonstrate that the linearly most unstable 
wavenumber will not dominate a t  finite amplitude (Pedlosky 1981 ; Hart 1981 ; Klein 
& Pedlosky 1986). The difference in behaviour is probably due to  the explosive 
nature of the instability in the present study. At least one of the initial wavenumbers 
will not vacillate and the basic state vortex will eventually be destroyed. In  the 
channel models equilibration or vacillation is the general rule. Alteration of the mean 
state by the fastest growing wavenumber permits a different (lower) wavenumber to 
eventually dominate and equilibrate. 

Griffiths & Linden (1981) conducted laboratory experiments on the stability of 
two-layer baroclinic. vortices formed by the release of a cylindrical volume of 
buoyant fluid in a rotating system. Though the eddies generated by this technique 
had an interface which intersected the free surface, and thus were ageostrophic, the 
behaviour of unstable vortices was very similar to the calculations shown above. 
Griffiths & Linden (1981) emphasized the importance of interaction of vorticity of 
opposite signs in the break up. Their cartoon of an observed m = 3 instability (figure 
6, Griffiths & Linden 1981) bears a remarkable resemblance to our figure 7. In  figure 
15 we have plotted the transition points for observed modes of instability from their 
experiments (figure 5 in Griffiths & Linden) for vortices with an initial depth of half 
the total depth which corresponds to 6 = 1.0 in the present model. We have taken 
Fl to  equal their 8;‘ = ~ L ~ / g ’ H o  where Lo and H ,  are respectively the radius and 
depth of the initial cylindrical volume. Also shown are the transition points based on 
the fastest growing mode from the linear theory with 6 = 1 and qB = 0. The 
agreement is quite good. Certainly ageostrophic effects are important, but the model 
captures the basic features. 
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